Date: 12.7.2012
The ability of wheat to maintain a low sodium concentration ([Na(+)]) in leaves correlates with improved growth under saline conditions. This trait, termed Na(+) exclusion, contributes to the greater salt tolerance of bread wheat relative to durum wheat. To improve the salt tolerance of durum wheat, we explored natural diversity in shoot Na(+) exclusion within ancestral wheat germplasm. Previously, we showed that crossing of Nax2, a gene locus in the wheat relative Triticum monococcum into a commercial durum wheat (Triticum turgidum ssp. durum var. Tamaroi) reduced its leaf [Na(+)] (ref. 5).
Here we show that a gene in the Nax2 locus, TmHKT1;5-A, encodes a Na(+)-selective transporter located on the plasma membrane of root cells surrounding xylem vessels, which is therefore ideally localized to withdraw Na(+) from the xylem and reduce transport of Na(+) to leaves. Field trials on saline soils demonstrate that the presence of TmHKT1;5-A significantly reduces leaf [Na(+)] and increases durum wheat grain yield by 25% compared to near-isogenic lines without the Nax2 locus.
Munns R. a kol. (2012): Wheat grain yield on saline soils is improved by an ancestral Na(+) transporter gene. Nat Biotechnol. doi: 10.1038/nbt.2120
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Massachusetts institute of technology - University
Science - Daily Czech science news
New modified CRISPR protein can fit inside virus used for gene therapy
Tick-borne red meat allergy prevented in mice through new nanoparticle treatment