Date: 20.2.2015
A team led by researchers at Tufts University School of Engineering and the University of Pavia has reported development of the first three-dimensional tissue system that reproduces the complex structure and physiology of human bone marrow and successfully generates functional human platelets.
Using a biomaterial matrix of porous silk, the new system is capable of producing platelets for future clinical use and also provides a laboratory tissue system to advance study of blood platelet diseases.
"There are many diseases where platelet production or function is impaired," says Alessandra Balduini, M.D., research associate professor in the Department of Biomedical Engineering at Tufts, associate professor at the Department of Molecular Medicine at the University of Pavia and co-corresponding author on the paper. "New insight into the formation of platelets would have a major impact on patients and healthcare. In this tissue system, we can culture patient-derived megakaryocytes -- the bone marrow cells that make platelets -- and also endothelial cells, which are found in bone marrow and promote platelet production, to design patient-specific drug administration regimes."
The new system can also provide an in vitro laboratory tissue system with which to study mechanisms of blood disease and to predict efficacy of new drugs--providing a more precise and less costly alternative to in vivo animal models.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
CVUT - Czech Technical University
Charles University - Charles University in Prague
An edible toothpaste-based transistor
Immunotherapy prevents heart attacks progressing to heart failure