Date: 6.2.2013
A team of researchers from Scotland has used a novel 3D printing technique to arrange human embryonic stem cells (hESCs) for the very first time. It is hoped that this breakthrough, which has been published Feb. 5 in the journal Biofabrication, will allow three-dimensional tissues and structures to be created using hESCs, which could, amongst other things, speed up and improve the process of drug testing.
In the field of biofabrication, great advances have been made in recent years towards fabricating three-dimensional tissues and organs by combining artificial solid structures and cells; however, in the majority of these studies, animal cells have been used to test the different printing methods which are used to produce the structures.
In the study, the researchers, from Heriot-Watt University in collaboration with Roslin Cellab, a stem cell technology company, used a valve-based printing technique, which was tailored to account for the sensitive and delicate properties of hESCs. The hESCs were loaded into two separate reservoirs in the printer and were then deposited onto a plate in a pre-programmed, uniformed pattern.
Once the hESCs were printed, a number of tests were performed to discern how effective the method was. For example, the researchers tested to see if the hESCs remained alive after printing and whether they maintained their ability to differentiate into different types of cells. They also examined the concentration, characterisation and distribution of the printed hESCs to assess the accuracy of the valve-based method.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Science Magazine
Práce - Nabidky prace
Nano-nutrients can blunt effects of soil contamination, boost crop yields
Creek survey uncovers bacteriophages that could combat superbugs