Date: 1.12.2014
A breakthrough in the race to solve antibiotic resistance has been made by scientists. New research reveals an Achilles' heel in the defensive barrier that surrounds drug-resistant bacterial cells. The findings pave the way for a new wave of drugs that kill superbugs by bringing down their defensive walls rather than attacking the bacteria itself. It means that in future, bacteria may not develop drug-resistance at all.
The findings pave the way for a new wave of drugs that kill superbugs by bringing down their defensive walls rather than attacking the bacteria itself. It means that in future, bacteria may not develop drug-resistance at all.
The discovery doesn't come a moment too soon. The World Health Organization has warned that antibiotic-resistance in bacteria is spreading globally, causing severe consequences. And even common infections which have been treatable for decades can once again kill.
Researchers investigated a class of bacteria called 'Gram-negative bacteria' which is particularly resistant to antibiotics because of its cells' impermeable lipid-based outer membrane.
This outer membrane acts as a defensive barrier against attacks from the human immune system and antibiotic drugs. It allows the pathogenic bacteria to survive, but removing this barrier causes the bacteria to become more vulnerable and die.
Until now little has been known about exactly how the defensive barrier is built. The new findings reveal how bacterial cells transport the barrier building blocks (called lipopolysaccharides) to the outer surface...
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Biotechnology - Biotech information at Wikipedia
Africa Biotech - Biotechnology and African Agriculture news
Swimming microrobots deliver cancer-fighting drugs to metastatic lung tumors in mice
Chimeric nanomicelles show promise as alternative treatment for solid tumors