Date: 14.7.2017
Antibiotic resistance is a growing problem, especially among a type of bacteria that are classified as "Gram-negative." These bacteria have two cell membranes, making it more difficult for drugs to penetrate and kill the cells.
Researchers from MIT and other institutions are hoping to use nanotechnology to develop more targeted treatments for these drug-resistant bugs. In a new study, they report that an antimicrobial peptide packaged in a silicon nanoparticle dramatically reduced the number of bacteria in the lungs of mice infected with Pseudomonas aeruginosa, a disease causing Gram-negative bacterium that can lead to pneumonia.
This approach, which could also be adapted to target other difficult-to-treat bacterial infections such as tuberculosis, is modeled on a strategy that the researchers have previously used to deliver targeted cancer drugs.
"There are a lot of similarities in the delivery challenges. In infection, as in cancer, the name of the game is selectively killing something, using a drug that has potential side effects," says Sangeeta Bhatia, the John and Dorothy Wilson Professor of Health Sciences and Technology and Electrical Engineering and Computer Science.
As bacteria grow increasingly resistant to traditional antibiotics, one alternative that some researchers are exploring is antimicrobial peptides-naturally occurring defensive proteins that can kill many types of bacteria by disrupting cellular targets such as membranes and proteins or cellular processes such as protein synthesis.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2025 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Environmetal biotechnology - Information about environmetal biotechnology at Wikipedia
Biotechnology Books - Huge database of biotechnology books
Phage editing technology could lead to alternative treatments for antibiotic-resistant bacteria
Golden Lettuce genetically engineered to pack 30 times more vitamins