Date: 24.9.2013
UCLA researchers have discovered that diamonds on a much, much smaller scale than those used in jewelry could be used to promote bone growth and the durability of dental implants.
Nanodiamonds, which are created as byproducts of conventional mining and refining operations, are approximately four to five nanometers in diameter and are shaped like tiny soccer balls.
Scientists from the UCLA School of Dentistry, the UCLA Department of Bioengineering and Northwestern University, along with collaborators at the NanoCarbon Research Institute in Japan, may have found a way to use them to improve bone growth and combat osteonecrosis, a potentially debilitating disease in which bones break down due to reduced blood flow.
When osteonecrosis affects the jaw, it can prevent people from eating and speaking; when it occurs near joints, it can restrict or preclude movement. Bone loss also occurs next to implants such as prosthetic joints or teeth, which leads to the implants becoming loose—or failing.
Implant failures necessitate additional procedures, which can be painful and expensive, and can jeopardize the function the patient had gained with an implant. These challenges are exacerbated when the disease occurs in the mouth, where there is a limited supply of local bone that can be used to secure the prosthetic tooth, a key consideration for both functional and aesthetic reasons.
During bone repair operations, which are typically costly and time-consuming, doctors insert a sponge through invasive surgery to locally administer proteins that promote bone growth, such as bone morphogenic protein. Ho's team discovered that using nanodiamonds to deliver these proteins has the potential to be more effective than the conventional approaches.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Biotechnology Books no. 14 - 14th page of aour database of biotechnology books
Biotechnology projecst no.10 - 10th page of our biotechnology projects database
Tiny magnetic robots could treat bleeds in the brain
At-home stress testing possible, thanks to nanoparticles