Date: 18.10.2013
A specialist team of scientists from the University of Leicester has isolated viruses that eat bacteria -- called phages -- to specifically target the highly infectious hospital superbug Clostridium difficile (C. diff).
Now an exciting new collaboration between the University of Leicester, the University of Glasgow and AmpliPhi Biosciences Corporation could lead to the use of bacteriophages for treating the superbug Clostridium difficile infections.
Dr Martha Clokie, from the University of Leicester's Department of Infection, Immunity and Inflammation has been investigating an alternative approach to antibiotics, which utilizes naturally occurring viruses called bacteriophages, meaning 'eaters of bacteria'.
Dr Clokie said: "Ever since the discovery of the first antibiotic, penicillin, antibiotics have been heralded as the 'silver bullets' of medicine. They have saved countless lives and impacted on the well-being of humanity.
"But less than a century following their discovery, the future impact of antibiotics is dwindling at a pace that no one anticipated, with more and more bacteria out-smarting and 'out-evolving' these miracle drugs. This has re-energised the search for new treatments.
"One alternative to antibiotics is bacteriophages, known as phages, which unlike antibiotics, are specific in what they kill and will generally only infect one particular species, or even strain, of bacteria -- referred to as the 'host'. Following attachment to their hosts, they inject their DNA into the bacterium, which then replicates many times over, ultimately causing the bacterial cell to burst open. The phages released from the dead bacterium can then infect other host cells."
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Biotech dictionary - Useful biotech dictionary
Science Daily - Science Magazine
New bacteria-based therapy shows promise for fighting cancer
A chloroplast-mimicking nanoreactor for enhanced CO2 electrocatalysis