Date: 26.7.2013
For decades, doctors have understood that microbes in the human gut can influence how certain drugs work in the body - by either activating or inactivating specific compounds - but questions have remained about exactly how the process works.
Harvard scientists are now beginning to provide those answers. In a paper published July 19 in Science, Peter Turnbaugh, a Bauer Fellow at the Center for Systems Biology in the Faculty of Arts and Sciences (FAS), and Henry Haiser, a postdoctoral fellow, identify a pair of genes that appear to be responsible for allowing a specific strain of bacteria to break down a widely prescribed cardiac drug into an inactive compound, as well as a possible way to turn the process off.
"The traditional view of microbes in the gut relates to how they influence the digestion of our diet," Turnbaugh said. "But we also know that there are over 40 different drugs that can be influenced by gut microbes. What's really interesting is that although this has been known for decades, we still don't really understand which microbes are involved or how they might be processing these compounds."
To answer those questions, Turnbaugh and his colleagues chose to focus on digoxin, one of the oldest known cardiac glycosides. The medicine is typically prescribed to treat heart failure and cardiac arrhythmia.
"It's one of the few drugs that, if you look in a pharmacology textbook, it will say that it's inactivated by gut microbes," Turnbaugh said. "John Lindenbaum's group at Columbia showed that in the 1980s. They found that a single bacterial species, Eggerthella lenta, was responsible."
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Biotechnology company - list of biotechnology companies
Biotechnology Books - Search results of biotechnology books at Google
Immunotherapy prevents heart attacks progressing to heart failure
Nanofibers made of copper-binding peptides disrupt cancer cells