Date: 29.3.2013
When Charles Babbage prototyped the first computing machine in the 19th century, he imagined using mechanical gears and latches to control information. ENIAC, the first modern computer developed in the 1940s, used vacuum tubes and electricity. Today, computers use transistors made from highly engineered semiconducting materials to carry out their logical operations.
And now a team of Stanford University bioengineers has taken computing beyond mechanics and electronics into the living realm of biology. In a paper to be published March 28 in Science, the team details a biological transistor made from genetic material -- DNA and RNA -- in place of gears or electrons. The team calls its biological transistor the "transcriptor."
"Transcriptors are the key component behind amplifying genetic logic -- akin to the transistor and electronics," said Jerome Bonnet, PhD, a postdoctoral scholar in bioengineering and the paper's lead author.
The creation of the transcriptor allows engineers to compute inside living cells to record, for instance, when cells have been exposed to certain external stimuli or environmental factors, or even to turn on and off cell reproduction as needed. "Biological computers can be used to study and reprogram living systems, monitor environments and improve cellular therapeutics," said Drew Endy, PhD, assistant professor of bioengineering and the paper's senior author.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Science Magazine
Science Blogs - Blogs about science: Medicine, Biology, Physical science, ...
CRISPR-Cas10 can flood virally infected bacteria with toxic molecules, researchers discover
Enzymes in spider venom have bioeconomic potential