Date: 7.4.2021
Traumatic brain injuries can have severe and long-lasting repercussions that involve damage to the organ's tissue, cognitive impairments and disability. An implantable "brain glue" material developed at the University of Georgia could offer a way to intervene, by mimicking the supporting structure of brain cells to prevent tissue loss and regenerate neurons.
The "brain glue" is a type of hydrogel that was actually created back in 2017 by the University of Georgia 's Lohitash Karumbaiah. The material is designed to replicate the meshwork of sugars that support brain cells, by incorporating key structures that bind to basic fibroblast growth factor and brain-derived neurotrophic factor, protective proteins that boost survival and regrowth of brain cells after injury.
Previously, Karumbaiah and his colleagues had shown that this hydrogel could be injected into rats with traumatic brain injury to protect them against the tissue loss that would normally result, with observations four weeks later showing a significantly enhanced retention of neural stem cells.
The team has since made refinements to the hydrogel by re-engineering the surfaces of the protective proteins to promote regeneration of brain cells and restoration of their function. The improved hydrogel was again implanted into rats with severe traumatic brain injury, who after 20 weeks exhibited enhanced cell repair and improvement of motor function.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Biotechnology Industry Organization - BIO.org
Biotechnology projects - Plant biotechnology, Animal biotechnology, environmetal, ..
Team develops the first cell-free system in which genetic information and metabolism work together
First lung cancer vaccine given to patient in international trial