Date: 28.2.2014
Nanoparticle research is huge. That is, the study of nanoparticles, very miniscule objects that act as a unit with specific properties, is a very popular area of study. With implications in many avenues of science, from biomedicine to laser research, the study of how to create nanoparticles with desirable properties is becoming increasingly important.
Maria Benelmekki and researchers in Mukhles Sowwan's Nanoparticles by Design Unit recently made a breakthrough in synthesizing biomedically relevant nanoparticles. They published their findings in the journal Nanoscale.
Nanoparticles can be used in medicine for imaging during diagnosis and treatment. Other applications include targeted drug delivery and wound healing. However, creating nanoparticles for use in biomedicine presents many challenges.
Currently, nanoparticles are primarily made using chemicals, which is a problem when using them for medical purposes because these chemicals may be harmful to the patient. Additional issues are that the fabrication process takes several steps, the size of the particles is difficult to control and the particles can only survive in storage for a relatively short amount of time.
Benelmekki and colleagues have created biocompatible ternary nanoparticles, meaning they consist of 3 parts that each exhibit a useful property, and have done it without the use of chemicals. The new method allows for easy manipulation of the size of the particles to tailor-make them for a variety of uses all in one step. The researchers have also developed a method that provides better stability for longer storage.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Charles University - Charles University in Prague
Science Magazine
Anti-aging molecule successfully restores multiple markers of youth
Breakthrough genomic test identifies virtually any infection in one go