Date: 9.5.2013
The worm Caenorhabditis elegans is one of the most widely studied creatures. Scientists consider the worm a model organism for exploring animal development including neural development. The reasons are basic; it has one of the most simple nervous systems, and is convenient for genetic analysis.
Never mind that, in turn, there is already an enormous amount of biological data about the C. elegans; scientists are still seeking more answers about the worm. Now there is a novel information path, The OpenWorm Project. They are working up an artificial life form, computationally created, a digital life form as no other. "OpenWorm is an open source project dedicated to creating a virtual C. elegans nematode in a computer," says the project web page.
This is a collaborative undertaking that includes software developers and neuroscience researchers. Their work marks the first comprehensive computer model of the Caenorhabditis elegans nematode worm. This will be a detailed simulation modeling each of the worm's cells.
Their data draws from completed scientific experiments conducted over the past ten years. They are incorporating the available data into software models. They hope that modeling the creature with enough detail will trigger complex behaviors, such as feeding, finding mates and avoiding predators, spontaneously. In other words, their virtual worm would, as they anticipate, behave like a real-world worm.
With all the C. elegans simplicity, however, their work is not so easy. Reporting on their progress so far, the OpenWorm project site notes that "the challenge of simulating even a tiny worm is immense. It requires a lot of parallel activities."
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Práce - Nabidky prace
Biotechnology education - National biotechnology education centre
Reduce, reuse, reflycle: How genetically modified flies can reduce waste and keep it out of landfills
New modified CRISPR protein can fit inside virus used for gene therapy