Date: 5.8.2022
Yale scientists describe how Portulaca oleracea, commonly known as purslane, integrates two distinct metabolic pathways to create a novel type of photosynthesis that enables the weed to endure drought while remaining highly productive.
"This is a very rare combination of traits and has created a kind of 'super plant' – one that could be potentially useful in endeavors such as crop engineering," said Yale's Erika Edwards, professor of ecology and evolutionary biology and senior author of the paper.
Plants have independently evolved a variety of distinct mechanisms to improve photosynthesis, the process by which green plants use sunlight to synthesize nutrients from carbon dioxide and water. For instance, corn and sugarcane evolved what is called C4 photosynthesis, which allows the plant to remain productive under high temperatures. Succulents such as cacti and agaves possess another type called CAM photosynthesis, which helps them survive in deserts and other areas with little water. Both C4 and CAM serve different functions but recruit the same biochemical pathway to act as "add-ons" to regular photosynthesis.
What makes the weed purslane unique is that it possesses both of these evolutionary adaptations – which allows it to be both highly productive and also very drought tolerant, an unlikely combination for a plant. Most scientists believed that C4 and CAM operated independently within leaves of purslane.
But the Yale team, led by co-corresponding authors and postdoctoral scholars Jose Moreno-Villena and Haoran Zhou, conducted a spatial analysis of gene expression within the leaves of purslane and found that C4 and CAM activity are totally integrated. They operate in the same cells, with products of CAM reactions being processed by the C4 pathway. This system provides unusual levels of protection for a C4 plant in times of drought.
Image source: ZooFari/Wikimedia Commons, CC BY-SA 3.0.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Life Sciences Search engine - Huge database of genome, protein, gene, genome project, ..
Massachusetts institute of technology - University
Self-assembling and disassembling swarm molecular robots via DNA molecular controller
Breakthrough genomic test identifies virtually any infection in one go