Date: 4.8.2017
While the development of the CRISPR gene editing system is turning into one of the biggest scientific breakthroughs of the century, there are still many hurdles to overcome before the technology is efficiently applied in people.
One big problem is finding a way to clinically deliver the technology to humans and animals. A University of Chicago team recently overcame this challenge by transplanting CRISPR-treated skin grafts onto mice and showing it to be an effective way to deliver gene therapy to treat diabetes.
Building on 40 years of skin transplant knowledge, the team looked at ways to genetically modify epidermal progenitor cells to see if they could be transplanted into an organism and deliver a targeted gene therapy. To test the process diabetes was chosen as the target illness as it can be treated through strategically delivered proteins.
The team first looked at altering a gene for glucagon-like peptide 1 (GLP1), which is a hormone that is key to many diabetes treatments as it is responsible for stimulating the pancreas to create insulin. The hormone is known to have a very short half-life, so the team initially modified the GLP1 gene using CRISPR and attached it to an antibody fragment to both extend the hormone's half-life in the blood stream and allow the modified gene to circulate in the blood stream longer.
They then attached what is called an inducible promoter to the modified gene. This acts like a switch that causes the gene to produce more GLP1 as needed. In this instance the gene produces more GLP1 when exposed to tiny amounts of the antibiotic doxycycline.
The CRISPR-modified gene was then inserted into skin cells that were grown in a laboratory and ultimately transplanted onto mice. These mice had fully intact immune systems yet no significant rejection of the skin was observed.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Biotechnology company - list of biotechnology companies
BIO.com - Biotechnology News, Jobs, Software, Protocols, Events
New method uses nanoparticles to reprogram exhausted immune cells
These 3D model brains with cells from several people are first of their kind