Date: 22.7.2022
Harmful fungi cause enormous agricultural losses. Conventional techniques for combating them involve the use of poisonous fungicides.
Researchers at Karlsruhe Institute of Technology (KIT), working with partners from Germany, France, and Switzerland on the DialogProTec project, have developed environmentally safe alternatives that trick the pathogens' chemical communication with plants. Now that the research has been completed, the new technology is ready for use.
Conventional plant protection usually involves the use of poisonous fungicides to fight fungal diseases like esca. In DialogProTec, the researchers have developed a completely new approach that works without any environmentally hazardous toxins. "In nature, organisms interact using chemical signals. We've been able to identify some of the signals between the host and the pathogen, and to manipulate them," says Wolf, who adds that this "biohack" is precise and effective and has a minimal ecological footprint.
To develop the new methods, the KIT-led project founded an interdisciplinary research network including specialists in botany, fungal genetics, microsystem technology, organic chemistry, and agricultural sciences. The network used about 20,000 fungus strains from the collection at the Institute of Biotechnology and Drug Research (IBFW) in Kaiserslautern and about 6,000 plant species from KIT.
The researchers didn't need to work with entire plants and fungi to identify and exploit the right signals. Instead, they worked with individual cells. A microfluidics chip jointly developed with KIT's Institute of Microstructure Technology served as the basis for a miniature ecosystem.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
BIO.com - Biotechnology News, Jobs, Software, Protocols, Events
Biotechnology links - Useful biotech links for you
Porous nanofibrous microspheres show promise for diabetic wound treatment
Research team uses CRISPR/Cas9 to alter photosynthesis for the first time