Date: 24.4.2020
Flipping the standard viral drug targeting approach on its head, engineers at the University of California San Diego have developed a promising new "nanosponge" method for preventing HIV from proliferating in the body: coating polymer nanoparticles with the membranes of T helper cells and turning them into decoys to intercept viral particles and block them from binding and infiltrating the body's actual immune cells.
This technique, developed in the Nanomaterials and Nanomedicine Lab led by nanoengineering professor Liangfang Zhang, could be applied to many different kinds of viruses, opening the door for promising new therapies against difficult-to-combat viruses.
"The key innovation here is that we're standing on the other side of the big problem with HIV," said Weiwei Gao, a chemical engineer and associate project scientist in the Zhang Lab at the UC San Diego Jacobs School of Engineering. "The traditional drug development approach requires that we figure out how to block critical protein or signaling pathways in the virus so that it can't attack the body. The problem is that there are so many pathways and so much redundancy in these viruses, it's really difficult to find one pathway that's truly critical.
"Our approach comes from the other side: look at the virus target," he continued. "The nanoparticles are wrapped with the membranes of cells that the virus targets. Therefore, they can act as a decoy of the cell to intercept the viral attack."
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Nature Biotechnology - Biotechnology at Nature.com server.
Science Magazine
Ancient viral genomes preserved in glaciers reveal climate history – and how viruses adapt to climate change
Mice created with full human immune systems for the first time