Date: 18.1.2021
In a new study, German scientists have restored the ability to walk in mice that had been paralyzed after a complete spinal cord injury. The team created a “designer” signaling protein and injected it into the animals’ brains, stimulating their nerve cells to regenerate and share the recipe to make the protein.
Spinal cord injuries are among the most debilitating. Damaged nerve fibers (axons) may no longer be able to transmit signals between the brain and muscles, often resulting in paralysis to the lower limbs. Worse still, these axons cannot regenerate.
Previous studies have shown promise in restoring some limb function through spinal stimulation therapy, or by bypassing the injury site altogether. Other promising research in similar areas has involved using compounds that restore balance to the inhibitory/excitatory signals in the neurons of partially paralyzed mice, and transplanting regenerating nose nerve cells into the spines of injured dogs.
But in the new study, researchers from Ruhr-Universität Bochum (RUB) in Germany took a different path, aiming to repair the damaged axons with a protein they call hyper-interleukin-6 (hIL-6). As the name suggests, this is a synthetic version of a naturally occurring peptide, which has been tweaked to stimulate nerve cell regeneration.
In the study, the team tested hIL-6 on mice that had sustained a complete spinal cord crush, resulting in loss of function in both hind legs. They packaged the genetic instructions to produce hIL-6 into a common viral vehicle, and injected these into the sensorimotor cortex of the mice.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Plant biotechnology - Information about plant biotechnology
Nature Biotechnology - Biotechnology at Nature.com server.
Antarctic bacteria show promise as biocontrol agents for combating banana wilt
These 3D model brains with cells from several people are first of their kind