Date: 4.12.2013
Get ready: The "new genetics" promises to change faulty genes of future generations by introducing new, functioning genes using "designer sperm."
A new research report appearing online in The FASEB Journal shows that introducing new genetic material via a viral vector into the sperm of mice leads to the presence and activity of those genes in the resulting embryos. This new genetic material is actually inherited, present and functioning through three generations of the mice tested.
This discovery -- if successful in humans -- could lead to a new frontier in genetic medicine in which diseases and disorders are effectively cured, and new human attributes, such as organ regeneration, may be possible.
"Transgenic technology is a most important tool for researching all kinds of disease in humans and animals, and for understanding crucial problems in biology," said Anil Chandrashekran, Ph.D., study author from the Department of Veterinary Clinical Sciences at The Royal Veterinary College in North Mimms, United Kingdom.
To achieve these results, Chandrashekran and colleagues used lentiviruses to generate transgenic animals via the male germ line. When pseudotyped lentiviral vectors encoding green fluorescent protein (GFP) were incubated with mouse spermatozoa, these sperm were highly successful in producing transgenics. Lentivirally-transduced mouse spermatozoa were used in in vitro fertilization studies and when followed by embryo transfer, at least 42 percent of founders were transgenic for GFP. GFP expression was detected in a wide range of murine tissues, including testis and the transgene was stably transmitted to a third generation of transgenic animals.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Biotechnology portal - at Wikipedia. Useful information for you.
Biotechnology Events - Current biotechnology events
Porous nanofibrous microspheres show promise for diabetic wound treatment
3D laser printing with bioinks from microalgae