Date: 13.3.2013
Researchers at Columbia Engineering have developed a new "plug-and-play" method to assemble complex cell microenvironments that is a scalable, highly precise way to fabricate tissues with any spatial organization or interest -- such as those found in the heart or skeleton or vasculature. The study reveals new ways to better mimic the enormous complexity of tissue development, regeneration, and disease.
"George Eng, an MD/PhD student in my lab who just received his doctoral degree, designed a lock-and-key technique to build cellular assemblies using a variety of shapes that lock into templates much the way you would use LEGO building blocks," says Gordana Vunjak-Novakovic, who led the study. "What is really important about this technique is that these shapes are tiny -- just a fraction of millimeter, the thickness of a human hair -- and that their precise arrangements are made using cell-friendly hydrogels."
Tissue cells in the human body form specific architectures that are critical for the function of each tissue. Cells without specific spatial organization may never become fully functional if they do not recapitulate their intrinsic organization found in the body. The Columbia Engineering technique enables researchers to construct unique and controlled cell patterns that allow precise studies of cell function, so that, Vunjak-Novakovic adds, "we can now ask some of the more complex questions about how the cells respond to the entire context of their environment. This will help us explore cellular behavior during the progression of disease and test the effects of drugs, stem cells, and various other therapeutic measures."
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Biotechnology Books - Search results of biotechnology books at Google
Biotechnology - Biotechnology information directory
Nano-nutrients can blunt effects of soil contamination, boost crop yields
Tea brews up silver nanoparticles for wound healing in the developing world