Date: 3.5.2019
Researchers have discovered that honey bees are able to share immunity with other bees and to their offspring in a hive by transmitting RNA 'vaccines' through royal jelly and worker jelly. The jelly is the bee equivalent of mother's milk: a secretion used to provide nutrition to worker and queen bee larvae.
The findings suggest new ways to protect bees against viruses and the deadly Varroa mite that have been responsible for the recent dramatic decline in honey bee populations. Since around one third of the human diet globally is dependent on honey bee pollination, we need solutions urgently to help maintain flourishing bee colonies, for our food security and sustainability.
Dr. Eyal Maori from the Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, and his collaborators in Israel and the USA had been trialling a new type of antiviral therapy for bees when they got a hint that the bees were able to transmit biologically-active RNA molecules between colony members. The scientists today publish the evidence for such a bee-to-bee RNA transfer phenomenon in the journal Cell Reports.
These transmissible RNA molecules are produced by the honey bee's genes and by disease agents such as viruses. Unlike other RNA in the body, these RNA molecules do not code for protein. Instead, they play a direct role in immunity, gene regulation and other biological mechanisms.
In the study released today, the researchers demonstrated that dietary RNA is taken up from the ingestion system into the bee's circulatory fluid and spread to the jelly-secreting glands. The dietary RNA is then secreted with the jelly and taken-up by larvae fed on the jelly.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Enzyme biotechnology - Information about Enzyme biotechnology
Animal Biotechnology - Animals, animal biotech
Genetically engineered thornless roses pave the way for better crops
Researcher discovers 1 in 5 bacteria can break down plastic