Date: 25.4.2013
Biologists at UC San Diego have identified eight genes never before suspected to play a role in wound healing that are called into action near the areas where wounds occur.
Their discovery, detailed this week in the open-access journal PLOS ONE, was made in the laboratory fruit fly Drosophila. But the biologists say many of the same genes that regulate biological processes in the hard exoskeleton, or cuticle, of Drosophila also control processes in human skin. That makes them attractive candidates for new kinds of wound-healing drugs or other compounds that could be used to treat skin ailments.
By puncturing the cuticle and epidermis of fruit fly embryos in their experiments, the researchers examined 84 genes that are turned on and 78 that are turned off as the fly embryo responds to healing. From these 162 genes, they identified eight genes that are expressed at either very low levels or not at all in most cells during development, but are activated near the puncture wounds.
The researchers were surprised to discover that an immune response begins as soon as the flies' cuticles and epidermis were punctured, releasing antimicrobial peptides and other compounds that prepare the embryo should bacteria or fungi enter the site of injury. The key to their technique was the use of trypsin, a member of a family of enzymes called serine proteases, which activates genes involved in wound healing. The next step is to see if these genes play a comparable role in humans.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Science Magazine
Science Blogs - Blogs about science: Medicine, Biology, Physical science, ...
CRISPR-Cas10 can flood virally infected bacteria with toxic molecules, researchers discover
Enzymes in spider venom have bioeconomic potential