Home pagePress monitoringDNA nano-foundries cast custom-shaped 3-D metal...

DNA nano-foundries cast custom-shaped 3-D metal nanoparticles

Date: 13.10.2014 

Researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University have unveiled a new method to form tiny 3D metal nanoparticles in prescribed shapes and dimensions using DNA, Nature's building block, as a construction mold. 

The ability to mold inorganic nanoparticles out of materials such as gold and silver in precisely designed 3-D shapes is a significant breakthrough that has the potential to advance laser technology, microscopy, solar cells, electronics, environmental testing, disease detection and more.

"We built tiny foundries made of stiff DNA to fabricate metal nanoparticles in exact three-dimensional shapes that we digitally planned and designed," said Peng Yin, senior author of the paper, Wyss core faculty member and Assistant Professor of Systems Biology at Harvard Medical School.

"The paper's findings describe a significant advance in DNA nanotechnology as well as in inorganic nanoparticle synthesis," Yin said. For the very first time, a general strategy to manufacture inorganic nanoparticles with user-specified 3D shapes has been achieved to produce particles as small as 25 nanometers or less, with remarkable precision (less than 5 nanometers). A sheet of paper is approximately 100,000 nanometers thick.


 

CEBIO

  • CEBIO
  • BC AV CR
  • Budvar
  • CAVD
  • CZBA
  • Eco Tend
  • Envisan Gem
  • Gentrend
  • JAIP
  • Jihočeská univerzita
  • Madeta
  • Forestina
  • ALIDEA

LinkedIn
TOPlist