Date: 25.4.2022
For some time now, it's been known that the application of electricity can help heal wounds. The experimental new ePatch bandage takes that approach, plus it boosts the healing process by killing bacteria.
Developed by at Los Angeles' Terasaki Institute for Biomedical Innovation, the ePatch incorporates electrodes made of silver nanowires mixed into a seaweed-derived hydrogel known as alginate. The latter is already used in surgical dressings, as it's biocompatible and it maintains optimal moisture levels.
By chemically modifying the alginate and adding calcium to it, the scientists were able to increase the function and stability of the silver nanowires. The resulting hydrogel was printed onto a flexible silicone sheet, the surface of which was partially covered with a stencil-like template.
When that template was subsequently removed, the alginate that was left behind formed the two electrodes – they were then hard-wired to an external power source. By varying the size and shape of the silicone sheets, it was possible to create ePatches capable of covering and conforming to the contours of a wide variety of wounds.
When the technology was tested on rats with external wounds, the delivered electrical current was found to quicken the speed of healing not only by causing skin and other granulation cells to migrate to the site, but also by inducing the formation of blood vessels and reducing inflammation. Whereas wounds on an untreated control group of rats took 20 days to heal, the ePatch-treated rats healed in just seven days.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
ScienceWeek - Biotechnology Science since 1997
DNA - Deoxyribonucleic Acid - DNA at MSN Encarta Encyclopedia
Phage cocktail shows promise against drug-resistant bacteria
Groundcherry gets genetic upgrades: Turning a garden curiosity into an agricultural powerhouse