Date: 7.4.2014
Chemotherapeutic drugs excel at fighting cancer, but they're not so efficient at getting where they need to go. They often interact with blood, bone marrow and other healthy bodily systems. This dilutes the drugs and causes unwanted side effects.
Now, researchers are developing a better delivery method by encapsulating the drugs in nanoballoons – which are tiny modified liposomes that, upon being struck by a red laser, pop open and deliver concentrated doses of medicine.
Described April 3 in the journal Nature Communications, the innovation could improve cancer treatment, reduce its side effects and boost research about the disease, which annually kills millions of people worldwide.
"Why PoP-liposomes, or nanoballoons, open in response to an otherwise harmless red laser is still a bit of a mystery to us, but we have definitely unearthed a new and unique phenomenon," said corresponding author Jonathan Lovell, PhD, UB assistant professor of biomedical engineering. "Its potential for improving how we treat cancer is immense."
Roughly 1,000 times thinner than human hair, nanoballoons consist of porphyrin, an organic compound, and phospholipid, a fat similar to vegetable oil. Like conventional chemotherapy, they would be delivered to patients intravenously.
But because the nanoballoons encapsulate the anti-cancer drugs, they diminish the drugs' interaction with healthy bodily systems.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Biotechnology - Biotechnology information directory
Brno University of Technology - university of technology in Brno
Tiny skin-stabbing stars designed to get meds through the epidermis
Microrobot-packed pill shows promise for treating inflammatory bowel disease in mice