Date: 24.5.2023
Gluten is one of the largest natural proteins and has fantastic properties: It keeps a well-cooked dough airy until baking stabilizes the open-pore structure.
Prof. Dr. Mario Jekle from the University of Hohenheim in Stuttgart is working on processes in which selected proteins from peas, rapeseed, rice, or maize, for example, directly replace gluten protein or can be linked to form chains with gluten-like properties.
Saponins from daisies and quinoa seeds or mucilages from cereal hulls additionally support the formation of an airy dough – and in some cases enrich it with valuable dietary fiber. The result can be put in the oven – or printed out in the 3D printer in an energy-saving way and with many additional options.
Feller's baking experiment combines many things: food technology with materials science and engineering. The special challenge in this experiment is the recipe, as the dough is completely gluten-free and should still produce fluffy and tasty baked goods.
This is because gluten is a problematic protein for about 2% to 3% of the population. "We now know three disease patterns that are related to gluten," said Prof. Dr. med. Stephan Bischoff of the Institute of Clinical Nutrition at the University of Hohenheim.
The best known is celiac disease, a mixture of an allergy and autoimmune disease. He noted that wheat allergy, which is triggered by gluten and similar peptides, is similarly widespread. In addition, there is a third clinical picture, wheat sensitivity, which has been the least researched to date.
Zdroj obrázku: University of Hohenheim / Oliver Reuther.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Biotechnology links - Useful biotech links for you
Bioenergy 2007 - Conference bioenergy 2007
First lung cancer vaccine given to patient in international trial
New organoid culture method can verify human toxicity of nanomaterials