Date: 25.3.2013
Science Daily, March 12, 2013: Fungi, with the exception of shitake and certain other mushrooms, tend to be something we associate with moldy bread or dank-smelling mildew. But they really deserve more respect. Fungi have fantastic capabilities and can be grown, under certain circumstances, in almost any shape and be totally biodegradable. And, if this weren't enough, they might have the potential to replace plastics one day. The secret is in the mycelia.
Union College Biology Professor Steve Horton likens this mostly underground portion of fungi (the mushrooms that pop up are the reproductive structures) to a tiny biological chain of tubular cells.
"It's this linked chain of cells that's able to communicate with the outside world, to sense what's there in terms of food and light and moisture," he said. "Mycelia can take in nutrients from available organic materials like wood and use them as food, and the fungus is able to grow as a result."
"When you think of fungi and their mycelia, their function -- ecologically -- is really vital in degrading and breaking things down," Horton added. "Without fungi, and bacteria, we'd be I don't know how many meters deep in waste, both plant matter and animal tissue."
Looking something like extremely delicate, white dental floss, mycelia grow in, through and around just about any organic substrate. Whether it's leaves or mulch, mycelia digest these natural materials and can also bind everything together in a cohesive mat. And these mats can be grown in molds, such as those that might make a packing carton...
...read more at
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Biotechnology events - Database of international biotechnology events.
Berkeley - University of California
New nanoparticles boost immune system in mice to fight melanoma and breast cancer
At-home stress testing possible, thanks to nanoparticles