Date: 25.9.2023
One proven method for tracking down the genetic causes of diseases is to knock out a single gene in animals and study the consequences this has for the organism.
The problem is that for many diseases, the pathology is determined by multiple genes. This makes it extremely difficult for scientists to determine the extent to which any one of the genes is involved in the disease. To do this, they would have to perform many animal experiments – one for each desired gene modification.
Researchers led by Randall Platt, Professor of Biological Engineering at the Department of Biosystems Science and Engineering at ETH Zurich in Basel, have now developed a method that will greatly simplify and speed up research with laboratory animals: using the CRISPR-Cas gene scissors, they simultaneously make several dozen gene changes in the cells of a single animal, much like a mosaic.
While no more than one gene is altered in each cell, the various cells within an organ are altered in different ways. Individual cells can then be precisely analyzed. This enables researchers to study the ramifications of many different gene changes in a single experiment.
For the first time, the ETH Zurich researchers have now successfully applied this approach in living animals – specifically, in adult mice – as they report in the current issue of Nature. Other scientists had previously developed a similar approach for cells in culture or animal embryos.
Zdroj obrázku: ETH Zürich.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Masaryk University - Masaryk University in Brno
Environmental biotechnology - Information about Environmental biotechnology
Developing a nano-treatment to help save mangroves from deadly disease
New bacteria-based therapy shows promise for fighting cancer