Date: 29.7.2014
Almost 50 percent of our genome is made up of highly repetitive DNA, which makes it very difficult to be analysed.
In fact, repeats are discarded in most genome-wide studies and thus, insights into this part of the genome remained limited.
Scientists from the Max Planck Institute of Immunobiology and Epigenetics (MPI-IE) in Freiburg now succeeded in examining this dark side of the genome. Their analyses revealed that repeat-associated heterochromatin is essential to repress retrotransposons and thereby protects the genomic integrity of stem cells.
This work opens the way for future genome-wide analyses of repetitive regions in the genome and is in line with newly emerging functions for heterochromatin.
Only 1 % of the human genome contains coding information, while the remaining 99 % harbour non-coding and repetitive DNA. DNA and its packaging proteins (histones) create a polymer called chromatin that also regulates gene expression. There are two major chromatin states: Euchromatin is open or accessible and thus, genes can be activated. In contrast, heterochromatin is closed or inaccessible and therfore, genes are repressed.
A research team led by Prof. Dr. Thomas Jenuwein, director at the MPI-IE, now investigated these genome areas in mouse stem cells using heterochromatin factors. They conducted genome-wide mapping for the enzyme 'histone methyltransferase Suv39h', one of the most prominent enzymes involved in heterochromatin formation.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Biotechnology - Biotech information at Wikipedia
Biotechnology organizations - Biotech research institute, company, university, ..
Designing long-lived peptides for more powerful medicines
Microrobot-packed pill shows promise for treating inflammatory bowel disease in mice