Date: 20.7.2018
Bacteriophages are viruses that target specific strains of bacteria. They were explored in the early 20th century as potential treatments for infection, but fell by the wayside once antibiotics were discovered.
However, with superbugs increasingly developing antibiotic resistance, scientists have once again started investigating how they might be used in medical contexts.
The Georgia Tech team decided to try to put phages to work on lung infections like pneumonia, or those that recur in patients with cystic fibrosis. To do so, they grew the viruses on particles of a biocompatible polymer, then dried them out into a powder that could be inhaled.
"When we immobilized the phage on the particles, we could retain good activity for days – as long as two weeks at room temperature," says Andrés García, an author of the study. "We could store these particles, and when we delivered them to mice, get good distribution through the lungs. We believe the particles help stabilize the phage and improve the distribution in the lungs."
In tests on mice with pneumonia, the team found that the treatment cleared up the infection, while those that didn't receive it died. Other mice were engineered to have cystic fibrosis-like lungs, and the phage treatment significantly reduced the population of bacteria in their lungs.
The treatment isn't without its hurdles, though. The team says that phages produce harmful toxins and can trigger immune responses, so future work will go into finding ways around these issues. Further study will also test the technique in larger animals, against mixtures of bacteria, and against chronic infections.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Biotechnology - Biotech information at Wikipedia
Biotechnology company - list of biotechnology companies
An edible toothpaste-based transistor
More efficient bioethanol production might be possible using persimmon tannin to help yeast thrive