Using advanced new microscopy techniques in concert with sophisticated transgenic technologies, scientists at The Wistar Institute have for the first time created three-dimensional, time-lapse movies showing immune cells targeting cancer cells in live tumor tissues. In recorded experiments, immune cells called T cells can be seen actively migrating though tissues, making direct contact with tumor cells, and killing them.
Insights from this new view of the body's on-board defenses against cancer may open the way for improved immunotherapies to treat the disease.
With a series of movies made under different experimental conditions, the researchers resolved important questions about the mechanisms by which T cells act against cancer. Their findings, published online November 20, will appear in the November 27 print edition of The Journal of Experimental Medicine.
"We've taken the first real-time look at the final phase of the immune system's response to cancer cells," says Wolfgang Weninger, M.D., an assistant professor in the Immunology Program at Wistar and senior author on the new study. "This has enabled us to delineate the rules of T cell migration and engagement directly within the intricate microenvironment of tumors."
The scientists used a leading-edge instrument called a two-photon microscope, able to peer inside living tissues. The microscope tracked and recorded the movements in three dimensions over time of T cells in a transgenic mouse developed by Weninger and Ulrich von Andrian at Harvard Medical School in which the cells fluoresce green. In addition, for this study, tumor cells in the mice were engineered to fluoresce blue...
Whole article: "www.sciencedaily.com":[ http://www.sciencedaily.com/releases/2006/11/061120181948.htm]
Scientists look at precancerous cells -
Researchers in Boston have identified how a missing protein causes tissue to become precancerous, the Massachusetts Institute of Technology announced (19.3.2007)
Researchers Identify Ovarian Cancer Biomarkers -
Researchers have identified markers unique to the cells of blood vessels running through ovarian tumors (12.3.2007)