Date: 13.5.2020
A modification that creates more male offspring was able to eliminate populations of malaria mosquitoes in lab experiments.
A team led by Imperial College London spread a genetic modification that distorts the sex ratio through a population of caged Anopheles gambiae mosquitoes using 'gene drive' technology.
The team's modification causes mosquitoes to produce more male offspring, eventually leading to no females being born and a total collapse in the population. This represents the first successful sex-distorter gene drive ever created, a goal for scientists as these modifications are expected to be extremely effective at controlling natural mosquito populations.
There were 228 million cases of malaria in 2018, and 405,000 deaths, with new interventions needed to move towards malaria eradication. There are around 3500 species of mosquito worldwide, of which only 40 related species can carry malaria. The team's modification was applied to Anopheles gambiae mosquitoes, the main malaria vector in sub-Saharan Africa.
The hope is that Anopheles gambiae mosquitoes carrying a sex-distorter gene drive would be released in the future, spreading the male bias within local malaria-carrying mosquito populations and causing them to collapse.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Biotechnology legislative - Biotech legislative environment search
Biotechnology events - Database of international biotechnology events.
Team develops an intelligent nanodevice based on a component of cinnamon essential oil as an antimicrobial agent
Tea brews up silver nanoparticles for wound healing in the developing world