Date: 26.1.2022
There are more than 9,000 species of marine sponges (Phylum Porifera) worldwide, which are a source of novel natural products. They contain promising chemical agents that may be useful in combatting cancer, COVID-19 and antibiotic-resistant Staphylococcus bacteria.
These chemicals interact with molecules that have been conserved throughout evolutionary history and are involved in human disease processes, for example, cell cycling, immune and inflammatory responses, and calcium and sodium regulation.
Researchers have come up with a viable solution. They previously achieved a groundbreaking discovery from Florida Atlantic University's Harbor Branch Oceanographic Institute for marine biotechnology by creating a marine invertebrate (sponge) cell culture using an optimized nutrient medium to develop sponge cell lines and rapid division. Prior to this discovery, marine invertebrate cell lines did not exist.
Now, for the first time, the FAU Harbor Branch scientists have taken this cutting-edge research to a new level by successfully culturing sponge cells in 3D. Cells in 2D culture exhibit different biological and physiological characteristics and their interactions and functions, which play a key role in these characteristics, are limited in 2D culture. The new 3D method better represents how sponge cells function in nature and will help to scale up production of sponge biomass and bioactive metabolites.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Masaryk University - Masaryk University in Brno
Biotechnology company - list of biotechnology companies
Enzymes in spider venom have bioeconomic potential
New technology protects crops by testing the air for the DNA of plant diseases