Date: 8.4.2015
A pocket-sized device that can rapidly determine the sequence of an organism's DNA has shown its potential in disease detection, according to a study published in the open access, open data journal GigaScience.
In the first analysis of its kind, researchers were able to use the device to accurately identify a range of closely-related bacteria and viruses within six hours, demonstrating the potential for this technology to be used as a mobile diagnostic clinic during outbreaks.
The MinION 'Nanopore sequencer' is a low-cost palm-sized sequencing device from Oxford Nanopore Technologies that has been made available to some research groups for testing. It is powered and operated via a USB connection plugged into a laptop, which means that it could potentially be used for on-site clinical analyses in remote locations, negating the need for samples to be sent off to laboratories.
Lead author Andrew Kilianski from Edgewood Chemical Biological Center, USA, whose team tested the device in joint collaboration with Signature Science, LLC, said: "Our findings are important because we have for the first time communicated to the community that this technology can be incredibly useful in its current state.
"Being able to accurately identify and characterize strains of viruses and bacteria using a mobile platform is attractive to anyone collecting biological samples in the field. And we expect that as the technology improves, the sequencing will generally become cheaper, faster and more accurate, and could have further clinical applications."
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Bioenergy 2007 - Conference bioenergy 2007
Biotechnology Books - Search results of biotechnology books at Google
Silicon exoskeletons for blood cells: Engineered blood cells successfully transfused between species
Swimming microrobots deliver cancer-fighting drugs to metastatic lung tumors in mice