Date: 24.9.2018
The team from Imperial College London were able to crash caged populations of the malaria vector mosquito Anopheles gambiae in only 7-11 generations. This is the first time experiments have been able to completely block the reproductive capacity of a complex organism in the laboratory using a designer molecular approach.
The technique, called gene drive, was used to selectively target the specific mosquito species An. gambiae that is responsible for malaria transmission in sub-Saharan Africa. There are around 3500 species of mosquito worldwide, of which only 40 related species can carry malaria.
The hope is that mosquitoes carrying a gene drive would be released in the future, spreading female infertility within local malaria-carrying mosquito populations and causing them to collapse.
In 2016, there were around 216 million malaria cases and an estimated 445,000 deaths worldwide, mostly of children under five years old. Lead researcher Professor Andrea Crisanti, from the Department of Life Sciences at Imperial, said: "2016 marked the first time in over two decades that malaria cases did not fall year-on-year despite huge efforts and resources, suggesting we need more tools in the fight."
The team's results, published today in Nature Biotechnology, represent the first time gene drive has been able to completely suppress a population, overcoming resistance issues previous approaches have faced.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
ScienceWeek - Biotechnology Science since 1997
Science Daily - Science Magazine
Silicon exoskeletons for blood cells: Engineered blood cells successfully transfused between species
Using gas bubbles to precisely deliver nanomedicines shows promise for lung cancer treatment