Date: 7.10.2020
Using specialized nanoparticles, MIT engineers have developed a way to turn off specific genes in cells of the bone marrow, which play an important role in producing blood cells. These particles could be tailored to help treat heart disease or to boost the yield of stem cells in patients who need stem cell transplants, the researchers say.
This type of genetic therapy, known as RNA interference, is usually difficult to target to organs other than the liver, where nanoparticles would tend to accumulate. The MIT researchers were able to modify their particles in such a way that they would accumulate in the cells found in the bone marrow.
"If we can get these particles to hit other organs of interest, there could be a broader range of disease applications to explore, and one that we were really interested in this paper was the bone marrow. The bone marrow is a site for hematopoiesis of blood cells, and these give rise to a whole lineage of cells that contribute to various types of diseases," says Michael Mitchell, a former MIT postdoc and one of the lead authors of the study.
In a study of mice, the researchers showed that they could use this approach to improve recovery after a heart attack by inhibiting the release of bone marrow blood cells that promote inflammation and contribute to heart disease.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Biotechnology - Biotechnology information directory
Bioenergy 2007 - Conference bioenergy 2007
Novel nanoparticles can trap and neutralize large amounts of SARS-CoV-2
Antioxidant carbon dot nanozymes alleviate depression in rats by restoring the gut microbiome