Date: 3.9.2014
Cars, planes and many electronic products are now built with the help of sophisticated assembly lines. Mobile assembly carriers, on to which the objects are fixed, are an important part of these assembly lines.
In the case of a car body, the assembly components are attached in various work stages arranged in a precise spatial and chronological sequence, resulting in a complete vehicle at the end of the line.
The creation of such an assembly line at molecular level has been a long-held dream of many nanoscientists. "It would enable us to assemble new complex substances or materials for specific applications," says Professor Viola Vogel, head of the Laboratory of Applied Mechanobiology at ETH Zurich. Vogel has been working on this ambitious project together with her team and has recently made an important step.
In a paper published in the latest issue of the Royal Society of Chemistry's Lab on a Chip journal, the ETH researchers presented a molecular assembly line featuring all the elements of a conventional production line: a mobile assembly carrier, an assembly object, assembly components attached at various assembly stations and a motor (including fuel) for the assembly carrier to transport the object from one assembly station to the next.
At the nano level, the assembly line takes the form of a microfluid platform into which an aqueous solution is pumped. This platform is essentially a canal system with the main canal just 30 micrometres wide -- three times thinner than a human hair. Several inflows and outflows lead to and from the canal at right angles. The platform was developed by Vogel's PhD student Dirk Steuerwald and the prototype was created in the clean room at the IBM Research Centre in Rüschlikon.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Biotechnology Books - Huge database of biotechnology books
DNA - Deoxyribonucleic acid (DNA) at Wikipedia
Mashed up purple marine bacteria makes an excellent eco-friendly fertilizer
3D laser printing with bioinks from microalgae