Date: 4.9.2013
Nanoscale "cages" made from strands of DNA can encapsulate small-molecule drugs and release them in response to a specific stimulus, McGill University researchers report in a new study.
The research, published online Sept. 1 in Nature Chemistry, marks a step toward the use of biological nanostructures to deliver drugs to diseased cells in patients. The findings could also open up new possibilities for designing DNA-based nanomaterials. "This research is important for drug delivery, but also for fundamental structural biology and nanotechnology," says McGill Chemistry professor Hanadi Sleiman, who led the research team.
DNA carries the genetic information of all living organisms from one generation to the next. But strands of the material can also be used to build nanometre-scale structures. (A nanometre is one billionth of a metre – roughly one-100,000th the diameter of a human hair.)
In their experiments, the McGill researchers first created DNA cubes using short DNA strands, and modified them with lipid-like molecules. The lipids can act like sticky patches that come together and engage in a "handshake" inside the DNA cube, creating a core that can hold cargo such as drug molecules.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Biotechnology Events - Current biotechnology events
Nature Biotechnology - Biotechnology at Nature.com server.
Reduce, reuse, reflycle: How genetically modified flies can reduce waste and keep it out of landfills
Mice created with full human immune systems for the first time