Date: 23.12.2014
A new catalytic process is able to convert what was once considered biomass waste into lucrative chemical products that can be used in fragrances, flavorings or to create high-octane fuel for racecars and jets.
A team of researchers from Purdue University's Center for Direct Catalytic Conversion of Biomass to Biofuels, or C3Bio, has developed a process that uses a chemical catalyst and heat to spur reactions that convert lignin into valuable chemical commodities. Lignin is a tough and highly complex molecule that gives the plant cell wall its rigid structure.
Mahdi Abu-Omar, the R.B. Wetherill Professor of Chemistry and Professor of Chemical Engineering and associate director of C3Bio, led the team.
"We are able to take lignin - which most biorefineries consider waste to be burned for its heat - and turn it into high-value molecules that have applications in fragrance, flavoring and high-octane jet fuels," Abu-Omar said. "We can do this while simultaneously producing from the biomass lignin-free cellulose, which is the basis of ethanol and other liquid fuels. We do all of this in a one-step process."
Plant biomass is made up primarily of lignin and cellulose, a long chain of sugar molecules that is the bulk material of plant cell walls. In standard production of ethanol, enzymes are used to break down the biomass and release sugars. Yeast then feast on the sugars and create ethanol.
Lignin acts as a physical barrier that makes it difficult to extract sugars from biomass and acts as a chemical barrier that poisons the enzymes. Many refining processes include harsh pretreatment steps to break down and remove lignin, he said.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
ScienceWeek - Biotechnology Science since 1997
Brno University of Technology - university of technology in Brno
Anti-aging molecule successfully restores multiple markers of youth
Suspended animation drug could buy time in medical emergencies