Date: 15.4.2015
Scientists focused on producing biofuels more efficiently have a new powerful dataset to help them study the DNA of microbes that fuel bioconversion and other processes.
In a paper published in Nature Scientific Data, researchers from the Department of Energy's Oak Ridge National Laboratory, North Carolina State University and LanzaTech describe methods and results for sequencing the Clostridium autoethanogenum bacterium. These and other microorganisms play important roles in biofuels, agriculture, food production, the environment, health and disease.
Armed with this knowledge, researchers can modify and optimize the microbes to convert waste into fuel or chemicals. The new Nature journal is dedicated to making scientifically valuable datasets more accessible, and as a result, ORNL scientists envision additional advances over the next few years.
"The publication of this genome dataset comprised of high-quality results can serve as a benchmark to assist others in developing new sequencing technologies and computational algorithms," said Steve Brown, a co-author and member of ORNL's Biosciences Division.
This particular microbe, classified as complex because of its more than 4.3 million base pairs of DNA, posed a significant challenge to scientists who used five sequencing technologies to achieve their results. Brown also noted that the dataset represents three generations of sequencing technologies and contains six types of data from four next-generation sequencing platforms.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Enzyme biotechnology - Information about Enzyme biotechnology
OECD Biotechnology Topic - Organisation for Economic Co-operation and Development
This spaghetti is so thin it can\'t be photographed with a regular camera
Silicon exoskeletons for blood cells: Engineered blood cells successfully transfused between species