Date: 10.10.2014
Scientists have been laboring to detect cancer and a host of other diseases in people using promising new biomarkers called "exosomes."
Indeed, Popular Science magazine named exosome-based cancer diagnostics one of the 20 breakthroughs that will shape the world this year. Exosomes could lead to less invasive, earlier detection of cancer, and sharply boost patients' odds of survival.
"Exosomes are minuscule membrane vesicles -- or sacs -- released from most, if not all, cell types, including cancer cells," said Yong Zeng, assistant professor of chemistry at the University of Kansas. "First described in the mid-'80s, they were once thought to be 'cell dust,' or trash bags containing unwanted cellular contents. However, in the past decade scientists realized that exosomes play important roles in many biological functions through capsuling and delivering molecular messages in the form of nucleic acids and proteins from the donor cells to affect the functions of nearby or distant cells. In other words, this forms a crucial pathway in which cells talk to others."
Now, Zeng and colleagues from the University of Kansas Medical Center and KU Cancer Center have just published a breakthrough paper in the Royal Society of Chemistry journal describing their invention of a miniaturized biomedical testing device for exosomes. Dubbed the "lab-on-a-chip," the device promises faster result times, reduced costs, minimal sample demands and better sensitivity of analysis when compared with the conventional bench-top instruments now used to examine the tiny biomarkers.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Bioenergy 2007 - Conference bioenergy 2007
CVUT - Czech Technical University
Nanopore direct RNA sequencing finds cancer\'s fingerprint to improve early detection
Gene-edited cells could halt multiple sclerosis progression