Date: 24.12.2013
Researchers have successfully isolated and sequenced the entire messenger RNA – the "genetic photocopies" – contained in the nucleus of a single brain cell.
This research, published in the journal Proceedings of the National Academy of Sciences, will help researchers better understand how organs function in health and disease and provide another stepping stone toward personalized medicine.
A team of researchers led by David Galbraith, a professor of plant sciences in the University of Arizona's BIO5 Institute, and Roger Lasken, a professor at the J. Craig Venter Institute in San Diego managed to isolate the transcriptome from the single nucleus of a rat brain cell and decipher the genetic information encoded in it.
By analyzing the transcriptomes of individual cells, researchers hope to better understand the processes that turn, say, a normal cell into a tumor cell. Analyses of single cells have only recently become possible; previously, scientists could only average patterns across many cells, hiding potentially important variation occurring in individual cells.
"The organs and tissues in our body are composed of many different cells, and in order to understand how the organ functions, we have to find out how the individual cells function and disentangle what each of them contributes," Galbraith said. "Further, we need to know how much variation is found in these individual cells.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Biotechnology events no 8 - Page 8 of our database of biotechnology events
Animal Biotechnology - Information about Animal Biotechnology
Unique mRNA delivery method could fix faulty genes before birth
Nanobody capable of limiting the side effects of opioids discovered