Home pagePress monitoringNew Nanosensor Uses Quantum Dots to Detect DNA

New Nanosensor Uses Quantum Dots to Detect DNA

Date: 6.4.2006 

Using tiny semiconductor crystals, biological probes and a laser, Johns Hopkins University engineers have developed a new method of finding specific sequences of DNA by making them light up beneath a microscope. The researchers, who say the technique will have important uses in medical research, demonstrated its potential in their lab by detecting a sample of DNA containing a mutation linked to ovarian cancer. The Johns Hopkins team described the new DNA nanosensor in a paper published in the November 2005 issue of the journal Nature Materials. "Conventional methods of finding and identifying samples of DNA are cumbersome and time-consuming," said Jeff Tza-Huei Wang, senior author of the paper and supervisor of the research team. "This new technique is ultrasensitive, quick and relatively simple. It can be used to look for a particular part of a DNA sequence, as well as for genetic defects and mutations." The technique involves an unusual blend of organic and inorganic components. "We are the first to demonstrate the use of quantum dots as a DNA sensor," Wang said. Quantum dots are crystals of semiconductor material, whose sizes are only in the range of a few nanometers across. (A nanometer is one-billionth of a meter.) They are traditionally used in electronic circuitry. In recent years, however, scientists have begun to explore their use in biological projects. Wang, an assistant professor in the Department of Mechanical Engineering and the Whitaker Biomedical Engineering Institute at Johns Hopkins, led his team in exploiting an important property of quantum dots: They can easily transfer energy. When a laser shines on a quantum dot, it can pass the energy on to a nearby molecule, which in turn emits a fluorescent glow that is visible under a microscope. But quantum dots alone cannot find and identify DNA strands. For that, the Johns Hopkins team used two biological probes made of synthetic DNA. Each of these probes is a complement to the DNA sequence the researchers are searching for. Therefore, the probes seek out and bind to the target DNA. "Source":[ http://www.jhu.edu/news_info/news/home05/dec05/dnanano.html].

 

CEBIO

  • CEBIO
  • BC AV CR
  • Budvar
  • CAVD
  • CZBA
  • Eco Tend
  • Envisan Gem
  • Gentrend
  • JAIP
  • Jihočeská univerzita
  • Madeta
  • Forestina
  • ALIDEA

LinkedIn
TOPlist