Date: 17.6.2016
A new and inexpensive technique for mass-producing the main ingredient in the most effective treatment for malaria, artemisinin, could help meet global demands for the drug, according to a study to be published in the journal eLife.
Artemisinin is produced in low yields by a herb called Artemisia annua, otherwise known as sweet wormwood. Researchers from the Max Planck Institute of Molecular Plant Physiology have now discovered a new way to produce artemisinic acid, the molecule from which artemisinin is derived, in high yields. Their method involves transferring its metabolic pathway - the series of biochemical steps involved in its production - from A. annua into tobacco, a high-biomass crop.
"Malaria is a devastating tropical disease that kills almost half a million people every year," says contributing author Ralph Bock, Director of the Department for Organelle Biology, Biotechnology and Molecular Ecophysiology.
"For the foreseeable future, artemisinin will be the most powerful weapon in the battle against malaria but, due to its extraction from low-yielding plants, it is currently too expensive to be widely accessible to patients in poorer countries. Producing artemisinic acid in a crop such as tobacco, which yields large amounts of leafy biomass, could provide a sustainable and inexpensive source of the drug, making it more readily available for those who need it most."
The team has called this approach to producing more artemisinic acid COSTREL ("combinatorial supertransformation of transplastomic recipient lines"). The first step in their process was to transfer the genes of the artemisinic acid pathway's core set of enzymes into the chloroplast genome of tobacco plants, generating what are known as transplastomic plants.
The team then used their best transplastomic tobacco plant line to introduce an additional set of genes into its nuclear genome, generating the COSTREL lines. These remaining genes encode factors that increase the synthesis, or generation, of the acid in ways that are still largely unknown.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Biotechnology - Biotech information at Wikipedia
Berkeley - University of California
New technology protects crops by testing the air for the DNA of plant diseases
Reduce, reuse, reflycle: How genetically modified flies can reduce waste and keep it out of landfills