Scientists' inability to follow the whereabouts of cells injected into the human body has long been a major drawback in developing effective medical therapies. Now, researchers at Johns Hopkins have developed a promising new technique for noninvasively tracking where living cells go after they are put into the body.
The new technique, which uses genetically encoded cells producing a natural contrast that can be viewed using magnetic resonance imaging (MRI), appears much more effective than present methods used to detect injected biomaterials.
Described in the February edition of Nature Biotechnology, the method was developed by a team of researchers from Johns Hopkins' Russell H. Morgan Department of Radiology and Radiological Science, the Hopkins Institute for Cell Engineering, and the F.M. Kirby Research Center for Functional Brain Imaging at the Kennedy Krieger Institute in Baltimore.
In their study, the researchers used a synthetic gene, called a reporter gene, which was engineered to have a high proportion of the amino acid lysine, which is especially rich in accessible hydrogen atoms. Because MRI detects energy-produced shifts in hydrogen atoms, when the "new" gene was introduced into animal cells and then "pelted" with radiofrequency waves from the MRI, it became readily visible. Using the technique as a proof of principle...
Whole article: "http://www.sciencedaily.com":[ http://www.sciencedaily.com/releases/2007/03/070320191001.htm]
Researchers simplify synthetic production of potential pharmaceuticals -
A team of researchers at The Scripps Research Institute has developed new techniques that dramatically reduce the time, complexity, and cost of synthesizing natural products with pharmaceutical potential (23.3.2007)