Date: 9.7.2013
A new combination of tissue engineering techniques could reduce the need for nerve grafts, according to new research by The Open University.
Regeneration of nerves is challenging when the damaged area is extensive, and surgeons currently have to take a nerve graft from elsewhere in the body, leaving a second site of damage. Nerve grafts contain aligned tissue structures and Schwann cells that support and guide neuron growth through the damaged area, encouraging function to be restored.
The research, published in Biomaterials, reported a way to manufacture artificial nerve tissue with the potential to be used as an alternative to nerve grafts. Pieces of Engineered Neural Tissue (EngNT) are formed by controlling natural Schwann cell behaviour in a three-dimensional collagen gel so that the cells elongate and align, then a stabilisation process removes excess fluid to leave robust artificial tissues. These living biomaterials contain aligned Schwann cells in an aligned collagen environment, recreating key features of normal nerve tissue.
Incorrect orientation of regenerating nerve cells can lead to delays in repair, scarring and poor restoration of nerve function. Much research has taken place into how support cells (Schwann cells) can be combined with materials to guide nerve regeneration. The new technology from The Open University avoids the use of synthetic materials by building neural tissue from collagen, a protein that is abundant in normal nerve tissue. Building the artificial tissue from natural proteins and directing the cellular alignment using normal cell-material interactions means the EngNT can integrate effectively at the repair site.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Biotechnology - Biotechnology channel at Nature.com
Bioenergy 2007 - Conference bioenergy 2007
New bacteria-based therapy shows promise for fighting cancer
Developing a nano-treatment to help save mangroves from deadly disease