Now scientists in the University at Buffalo's Institute for Lasers, Photonics and Biophotonics and Roswell Park Cancer Institute have developed an innovative solution in which the delivery system is the drug itself.
They describe for the first time in Molecular Pharmaceutics a drug delivery system that consists of nanocrystals of a hydrophobic drug.
The system involves the use of nanocrystals measuring about 100 nanometers of pure HPPH, (2-devinyl-2-(1'-hexyloxyethyl) pyropheophorbide), a photosensitizer currently in Phase I/II human clinical trials at RPCI for treating various types of cancer.
The UB researchers found that the nanocrystals of HPPH were taken up by tumors in vivo, with efficacy comparable to conventional, surfactant-based delivery systems.
A patent has been filed on this work.
"In this case, the drug itself acts as its own carrier," said Haridas Pudavar, Ph.D., UB research assistant professor of chemistry and a co-author.
The nanocrystals present a major advantage over methods of delivery involving other carriers, according to Paras Prasad, Ph.D., SUNY Distinguished Professor in the Department of Chemistry in UB's College of Arts and Sciences, executive director of the institute and a co-author.
Because other delivery systems, especially those containing surfactants, commonly used with HPPH and many other drugs, may add to the toxicity in the body, they have been considered imperfect solutions.
"Unlike formulations that require separate delivery systems, once this drug is approved, no additional approvals will be needed," said Prasad.
"Our published data in animal models demonstrate no difference in drug activity with the nanocrystal formulation," said Ravindra Pandey, Ph.D., Distinguished Professor of Biophysical Sciences at RPCI and a co-author on the paper.....
Whole article: "www.physorg.com":[ http://www.physorg.com/news92509314.html]
Nanoparticle Boost for Antitumor Vaccines -
Researchers have known for some time that certain sequences of synthetic DNA induce potent immune responses when injected into animals and humans (21.2.2007)
Canine parvovirus-like particles, a novel nanomaterial for tumor targeting -
Specific targeting of tumor cells is an important goal for the design of nanotherapeutics for the treatment of cancer (13.2.2007)
Scientists develop nanoparticles to battle cancer -
On a quest to modernize cancer treatment and diagnosis, an MIT professor and her colleagues have created new nanoparticles that mimic blood platelets (3.2.2007)