Date: 3.11.2011
University of Iowa scientists have discovered a new role for a protein that is mutated in Usher syndrome, one of the most common forms of deaf-blindness in humans. The findings, which were published Aug. 8 in Nature Neuroscience, may help explain why this mutation causes the most severe form of the condition.
The study suggests that the protein called harmonin, which is known to be involved in sound sensing in the inner ear, may also play a role in the transmission of sound information to the brain.
Hearing starts with the transmission of sound by inner hair cells in the ear. Sound waves cause movement of special structures called stereocilia on the tips of the hair cells. Harmonin is thought to mediate this movement, which then activates the cells and initiates transmission of sound information as electrical and chemical signals to the brain.
"Most of the research until now has concentrated on the input end of the inner hair cells were the sound waves produce motion of the stereocilia," said Amy Lee, Ph.D., senior study author and UI associate professor in the Departments of Molecular Physiology and Biophysics, Otolaryngology-Head and Neck Surgery, and Neurology. "Now we have found a new role for harmonin at the opposite end of these sound-sensing inner hair cells where it appears to control the signal output of the cell."
Lee and colleagues, including UI postdoctoral fellows Frederick Gregory (photo, right), Ph.D., and Keith Bryan (photo, lower left), Ph.D., found that harmonin is important for regulating the number of calcium channels present at the sound-transmitting synapse of inner hair cells...
...the whole article you can read on
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Brno University of Technology - university of technology in Brno
Biotechnology legislative - Biotech legislative environment search
Anti-aging molecule successfully restores multiple markers of youth
Toxic glass kills 99% of bone cancer without harming healthy cells