Home pagePress monitoringNovel Bio-Inspired Method to Grow High-Quality Graphene for...

Novel Bio-Inspired Method to Grow High-Quality Graphene for High-End Electronic Devices

Date: 13.12.2013 

A team of researchers from the National University of Singapore (NUS), led by Professor Loh Kian Ping, who heads the Department of Chemistry at the NUS Faculty of Science, has successfully developed an innovative one-step method to grow and transfer high-quality graphene on silicon and other stiff substrates, opening up opportunities for graphene to be used in high-value applications that are currently not technologically feasible.

This breakthrough, inspired by how beetles and tree frogs keep their feet attached to submerged leaves, is the first published technique that accomplishes both the growth and transfer steps of graphene on a silicon wafer. This technique enables the technological application of graphene in photonics and electronics, for devices such as optoelectronic modulators, transistors, on-chip biosensors and tunneling barriers.

Graphene has attracted a lot of attention in recent years because of its outstanding electronic, optical and mechanical properties, as well as its use as transparent conductive films for touch screen panels of electrodes. However, the production of high quality wafer-scale graphene films is beset by many challenges, among which is the absence of a technique to grow and transfer graphene with minimal defects for use in semiconductor industries.

Dr Gao Libo, the first author of the paper and a researcher with the Graphene Research Centre at NUS Faculty of Science, grew graphene on a copper catalyst layer coating a silicon substrate. After growth, the copper is etched away while the graphene is held in place by bubbles that form capillary bridges, similar to those seen around the feet of beetles and tree frogs attached to submerged leaves. The capillary bridges help to keep the graphene on the silicon surface and prevent its delamination during the etching of the copper catalyst. The graphene then attaches to the silicon layer.


 

CEBIO

  • CEBIO
  • BC AV CR
  • Budvar
  • CAVD
  • CZBA
  • Eco Tend
  • Envisan Gem
  • Gentrend
  • JAIP
  • Jihočeská univerzita
  • Madeta
  • Forestina
  • ALIDEA

LinkedIn
TOPlist