Home pagePress monitoringPancreas on a chip: Scientists combine organ-on-a-chip and...

Pancreas on a chip: Scientists combine organ-on-a-chip and stem-cell technologies

Date: 30.8.2019 

By combining two powerful technologies, scientists are taking diabetes research to a whole new level. In a study led by Harvard University's Kevin Kit Parker, microfluidics and human, insulin-producing beta cells have been integrated in an "Islet-on-a-Chip".

Kredit: Benjamin Pope, Harvard John A. Paulson School of Engineering and Applied Sciences.The new device makes it easier for scientists to screen insulin-producing cells before transplanting them into a patient, test insulin-stimulating compounds, and study the fundamental biology of diabetes.

The design of the Islet-on-a-Chip was inspired by the human pancreas, in which islands of cells ("islets") receive a continuous stream of information about glucose levels from the bloodstream, and adjust their insulin production as needed.

"If we want to cure diabetes, we have to restore a person's own ability to make and deliver insulin," explained Douglas Melton, Xander University Professor of Stem Cell and Regenerative Biology and co-director of the Harvard Stem Cell Institute (HSCI). "Beta cells, which are made in the pancreas, have the job of measuring sugar and secreting insulin, and normally they do this very well. But in diabetes patients these cells can't function properly. Now, we can use stem cells to make healthy beta cells for them. But like all transplants, there is a lot involved in making sure that can work safely."

Before transplanting beta cells into a patient, they must be tested to see whether they are functioning properly. The current method for doing this is based on technology from the 1970s: giving the cells glucose to elicit an insulin response, collecting samples, adding reagents, and taking measurements to see how much insulin is present in each one. The manual process takes so long to run and interpret that many clinicians give up on it altogether. The new, automated, miniature device gives results in real time, which can speed up clinical decision making.

 


 

CEBIO

  • CEBIO
  • BC AV CR
  • Budvar
  • CAVD
  • CZBA
  • Eco Tend
  • Envisan Gem
  • Gentrend
  • JAIP
  • Jihočeská univerzita
  • Madeta
  • Forestina
  • ALIDEA

LinkedIn
TOPlist