Date: 8.12.2014
A team of Michigan State University scientists has discovered an enzyme that is the key to the lethal potency of poisonous mushrooms.
The results, published in the current issue of the journal Chemistry and Biology, reveal the enzyme's ability to create the mushroom's molecules that harbor missile-like proficiency in attacking and annihilating a single vulnerable target in the human liver.
The team revealed how the enzyme contributes to the manufacture of chemical compounds known as cyclic peptides, a favorite type of molecule that pharmaceutical companies use to create new drugs. These findings could lead to single-minded medicines with zero side effects, said Jonathan Walton, professor of plant biology and co-lead author.
"Mushrooms are prolific chemical factories, yet only a few of their peptides are poisonous," he said. "These toxins survive the high temperatures of cooking and the acids of digestion, and yet they're readily absorbed by the bloodstream and go directly to their intended target. These are the exact qualities needed for an effective medicine."
Working with the mushroom species Amanita, Walton and his teammates disassembled one of its poisonous peptides, which can be compared to a laser-guided missile with a nuclear warhead.
By removing the molecular equivalent of the deadly warhead, they now have a sturdy, precise delivery system that can supply medicine -- rather than poison -- to a single target. By taking a laser, rather than a shotgun approach, scientists could develop medicines capable of curing disease without the patient suffering any side effects.
Gate2Biotech - Biotechnology Portal - All Czech Biotechnology information in one place.
ISSN 1802-2685
This website is maintained by: CREOS CZ
© 2006 - 2024 South Bohemian Agency for Support to Innovative Enterprising (JAIP)
Interesting biotechnology content:
Life Sciences Search engine - Huge database of genome, protein, gene, genome project, ..
DNA - Deoxyribonucleic acid (DNA) at Wikipedia
Enzymes in spider venom have bioeconomic potential
Study finds DNA scavengers can stop some antibiotic resistance from spreading